skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Christian, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A design for a metamaterial with tunable stiffness is introduced. The material can be switched from floppy to rigid by changing the lengths of the constituent beams, which is demonstrated using a temperature-responsive hydrogel. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026
  2. Nanoparticles, such as viruses, can enter cells via endocytosis, a process by which the cell membrane wraps around them. The role of nanoparticle size and shape on endocytosis has been well studied, but the biophysical details of how extracellular proteins on the cell membrane surface mediate uptake are less clear. Motivated by recent discoveries regarding extracellular vimentin in viral and bacterial uptake and the structure of coronaviruses, we construct a computational model with a cell-like and virus-like construct containing filamentous protein structures protruding from their surfaces. We study the impact of these additional degrees of freedom on viral wrapping. The cell surface is modeled as a deformable sheet with bending rigidity, and extracellular vimentin as semiflexible polymers, or extracellular components (ECC), placed randomly on the sheet. The virus is modeled as a deformable shell that also has explicit, freely rotating spike filaments on its surface. Our results indicate that cells with optimally populated filaments are more susceptible to infection as they take up the virus more quickly and utilize a relatively smaller area of the cell surface. At optimal ECC density, the cell surface forms a fold around the virus, which is faster and more efficient at wrapping than localized crumples. Additionally, cell surface bending rigidity aids in the generation of folds by increasing force transmission across the surface. Changing other mechanical parameters, such as the stretching stiffness of filamentous ECC or virus spikes, can result in localized crumple formation on the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Hydroxyapatite (HAP) exhibits a highly oriented hierarchical structure in biological hard tissues. The formation and selective crystalline orientation of HAP is a process that involves functional biomineralization proteins abundant in acidic residues. To obtain insights into the process of HAP mineralization and acidic residue binding, synthesized HAP with specific lattice planes including (001), (100), and (011) are structurally characterized following the adsorption of aspartic acid (Asp). The adsorption affinity of Asp on HAP surfaces is evaluated quantitatively and demonstrates a high dependency on the HAP morphological form. Among the synthesized HAP nanoparticles (NPs), Asp exhibits the strongest adsorption affinity to short HAP nanorods, which are composed of (100) and (011) lattice planes, followed by nanosheets with a preferential expression of the (001) facet, to which Asp displays a similar but slightly lower binding affinity. HAP nanowires, with the (100) lattice plane preferentially developed, show significantly lower affinity to Asp and evidence of multilayer adsorption compared to the previous two types of HAP NPs. A combination of solid-state NMR (SSNMR) techniques including 13C and 15N CP-MAS, relaxation measurements and 13C−31P Rotational Echo DOuble Resonance (REDOR) is utilized to characterize the molecular structure and dynamics of Asp-HAP bionano interfaces with 13C- and 15N-enriched Asp. REDOR is used to determine 13C−31P internuclear distances, providing insight into the Asp binding geometry where stronger 13C−31P dipolar couplings correlate with binding affinity determined from Langmuir isotherms. The carboxyl sites are identified as the primary binding groups, facilitated by their interaction with surface calcium sites. The Asp chelation conformations revealed by SSNMR are further refined with molecular dynamics (MD) simulation where specific models strongly agree between the SSNMR and MD models for the various surfaces. 
    more » « less
  4. Traditional professional development (PD) often focuses solely on skills and knowledge, without explicitly attending to participants' sense of community. In this instrumental case study, we explore the impact of a community-building PD experience on an Emerging Discipline-Based Education Researcher's (EDBER's) sense of community. We center the experiences of one tenure-track faculty member, James (a pseudonym), who participated in a Professional Development for Emerging Education Researchers field school for EDBERs, an example of PD that intentionally attends to building community around research. We find that the PD experience contributed to building James' lasting of community in education research, and we call for more PD to shift towards being simultaneously skills-focused and community-focused. 
    more » « less
  5. Newcomers to Discipline-based Education Research (DBER) face numerous challenges and supportive practices in becoming active members of their communities of practice. We present a framework for Montgomery’s groundskeeping leadership, which seeks to mitigate barriers and nurture community members for their growth and development (2020). We then apply that framework in the context of education researchers to examine some data from a set of interviews with Emerging Discipline-based Education Researchers. 
    more » « less
  6. Silva, Daniel (Ed.)
    The saturniid moth genusAutomerisincludes 145 described species. Their geographic distribution ranges from the eastern half of North America to as far south as Peru.Automeris moths are cryptically colored, with forewings that resemble dead leaves, and conspicuously colored, elaborate eyespots hidden on their hindwings. Despite their charismatic nature, the evolutionary history and relationships withinAutomerisand between closely related genera, remain poorly understood. In this study, we present the most comprehensive phylogeny ofAutomeristo date, including 80 of the 145 described species. We also incorporate two morphologically similar hemileucine genera,PseudautomerisandLeucanella, as well as a morphologically distinct genus,Molippa. We obtained DNA data from both dry-pinned and ethanol-stored museum specimens and conducted Anchored Hybrid Enrichment (AHE) sequencing to assemble a high-quality dataset for phylogenetic analysis. The resulting phylogeny supportsAutomerisas a paraphyletic genus, withLeucanellaandPseudautomerisnested within, with the most recent common ancestor dating back to 21 mya. This study lays the foundation for future research on various aspects ofAutomerisbiology, including geographical distribution patterns, potential drivers of speciation, and ecological adaptations such as antipredator defense mechanisms. 
    more » « less
  7. We propose and investigate an extension of the Caspar–Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies—in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g., periodicity)—is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly. 
    more » « less
  8. We develop a framework to understand the mechanics of metamaterial sheets on curved surfaces. Here we have constructed a continuum elastic theory of mechanical metamaterials by introducing an auxiliary, scalar gauge-like field that absorbs the strain along the soft mode and projects out the stiff ones. We propose a general form of the elastic energy of a mechanism based metamaterial sheet and specialize to the cases of dilational metamaterials and shear metamaterials conforming to positively and negatively curved substrates in the Föppl–Von Kármán limit of small strains. We perform numerical simulations of these systems and obtain good agreement with our analytical predictions. This work provides a framework that can be easily extended to explore non-linear soft modes in metamaterial elasticity in future. 
    more » « less